
© Copyright 2016 EMC Corporation.

#RSACharge © Copyright 2016 EMC Corporation.

Maximizing NetWitness Performance
Sean Ennis – Principal SE, Seattle [sean.ennis@rsa.com]

© Copyright 2016 EMC Corporation.

Agenda
• Overall Concept
• Optimizing Usage

– Processing Pipeline
– Feeds and App Rules and Lists, Oh My.

• Optimizing the Datastore (mostly index)
– Database & Data Flow
– Index, Index, and more Index

• Group Aggregation
• Monitoring Performance – Case Study

© Copyright 2016 EMC Corporation.

Overall Concept
Disclaimer: Lot’s of knobs to turn, and RSA tries to minimize the requirement to do so. This
presentation focuses on the most common concepts. If you are having serious performance issues,
please engage your friendly RSA {SE, PS, CS} representative.

It might help to think of performance optimization in 3.5 categories:

Usage
Processing pipeline, best

practices, etc.

Capture Tuning
Parser load, aggregation
delays, packet drops, etc.

Datastore Tuning
IndexDB

© Copyright 2016 EMC Corporation.

Optimizing Usage

© Copyright 2016 EMC Corporation.

Query Architecture

Note: 10.4+ uses “partial
results”, so results are loaded

as they come in. Feels
faster.

A query is not complete until all constituent
concentrators/brokers return their results. So, 1 slow

concentrator can ruin the whole party.

© Copyright 2016 EMC Corporation.

Query Architecture con’t.

Takeaways:

- Be aware of how many concentrators your query touches (log only? No need to query packet concentrators)
- Turn on Debug in Investigation
- In multi-site/large environments, consider Brokers to break up into queryable groups

© Copyright 2016 EMC Corporation.

Processing Pipeline
(slightly simplified)

Meta

Write packets/logs

Consume meta/
session ranges

IndexRaw

Write meta & index

Decoder Concentrator Lists, Reports, RE
Alerts = Queries

Reporting Engine

Queries

Investigation

Meta Aggregation +
Stream Processing

ESA

Q
U

ER
IE

S

Pre-Processing Post-Processing

© Copyright 2016 EMC Corporation.

Operator Impact

Note: Optimizations made in
10.5 to underlying logic

engine (OR)

Takeaways:

- Move as much to “pre processing” as possible. App rules & Feeds are your best friend. Results in single keys to query.
- Use feeds instead of Reporting Engine lists whenever possible (RE Lists effectively break up into many logical OR statements)
- Don’t use meta groups with ALL keys open. Break the problem down and open the minimal number to start (every open is a

query)
- Smaller, more specific meta groups.

© Copyright 2016 EMC Corporation.

Ex. App rules
Use case: Very frequently looking for users logging in to certain hosts with admin accounts from a particular
subnet.

Investigator Query (post processing) with no pre-processing app rule:

New investigator query (or RE rule) to get the same data:

Note: Could optimize this even
further by using a FEED to
track admin accounts and

critical hosts. This would save
logic processing.

ip.src=172.16.14.5/16 && user.dst begins ‘adm’ && host.dst begins ‘dc’

alert=‘tag_abnormaladminlogin’

Instead, what about creating an app rule to move the processing earlier in the pipeline and create a single meta value
(Admin -> Decoder -> Config -> App Rules)?

© Copyright 2016 EMC Corporation.

Ex. Feeds vs Lists
Use case: Daily report for traffic to/from a list of critical internal hosts

© Copyright 2016 EMC Corporation.

Optimizing the
Datastore

© Copyright 2016 EMC Corporation.

Query engine
ValueMap

SummaryDB
PageDB

MetadataRaw Log or PacketsMeta and Packet IDs
A few stats

Databases
Use case: Very frequently looking for users logging in to certain hosts with admin accounts from a particular
subnet.

sessionDB packetDB metaDB indexDB

© Copyright 2016 EMC Corporation.

Decoder

Databases by Decoder/Concentrator

sessionDB

packetDB

RAW DATA

metaDB

indexDB

sessionDB

indexDB

Concentrator

metaDB

META DATA

(temp)

(‘time’ only)

Most important for our purposes are:

packetDB(Decoder)
metaDB(Concentrator)
indexDB(Concentrator) ** Heavily impacts performance

© Copyright 2016 EMC Corporation.

Data Model

Session

Meta ID Start
Meta ID End

Packet/Log ID
Start

Meta Array (stored sequentially), 1-n

Packet
1

Packet
4

Packet
127

Packet
12

Log 1

Or

© Copyright 2016 EMC Corporation.

Indexing – the DB

indexDB

pageDB

summaryDB

Value-
maps

- One file per key, per slice
- Contains all unique values seen during that period (up to the

defined valuesMax)
- For each value, there’s a link to the summaryDB

- For each unique value, contains various counts/stats and a
link to the pageDB

- Compressed storage of session IDs
- Used to locate actual sessions containing reference to meta

key/value.

© Copyright 2016 EMC Corporation.

Indexing – the DB, con’t

© Copyright 2016 EMC Corporation.

Indexing – the DB. SLICES.
- NW holds the current slice in

memory (fast) but needs to flush
(save) to disk after a period of
time OR number of sessions.

- Pre 10.5 = scheduled job to save
every 8 hours

- Post 10.5 = save every
600,000,000 sessions

- Note: If upgraded through 10.5,
the default 8 hour schedule
persists. Fresh 10.5+ installs
default to session count saves.

slice = /var/netwitness/concentrator/index/managed-values-X

indexDB

pageD
B

summ
aryDB

Value
-

maps

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(1) Index at the right level

IndexKeys: Optimized for exists/!exists condition
IndexValues: Optimized for search/comparisons of actual values
IndexNone: Key defined, but no index

If a key needs to be searched often, you likely need IndexValues.

In investigator, you can still manually query values where index level =
IndexKeys but it will be SLOW.

Note: For Reporting Engine
rules, meta in the “WHERE”
clause (not “SELECT”) must

be indexed at some level.

must be indexed

does not need
to be indexed

PSA: Do NOT index “msg” !!

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(2) Keep the slice count LOW (~200-300?)

- Install >= 10.6, defaults to 600M slices
instead of time.

- Install <= 10.5, defaults to 8 hours –
must change setting & remove scheduled
job (concentrator -> files -> scheduler).

Any low volume devices initially installed @ 10.5 or
earlier?

- 1 slice ever 8 hours. 300 days of metadata =
~1000 slices = SLOW.

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(2) Keep the slice count LOW (~200-300?) (con’t)

1) Age out data for low volume devices if you can.
Timeroll on metaDB will truncate the index on 10.5+ after next index save point.

2) Orphaned slices? Open a support ticket - delete the files.

3) >= 10.6, make sure slicing is configured by session count and
Remove time-based slice save schedule.

What can you do if slice count = high?

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(3) # unique values per key, per slice < valueMax

If # unique values for a key in a slice > configured valueMax, that value becomes unsearchable.

Query> acme.loc = ‘Miami’ Result Session IDs = NIL
Query> acme.loc = ‘Chicago’ Result Session IDs = 79, 81

<key description=“ACME Location" format="Text" level="IndexValues" name=“acme.loc" valueMax=“5“/>

Value Atlanta New York Seattle LA Cleveland Miami Chicago

sessionIDs
with value 1-5,21 6,7,50-51 8,24 11-16,18 25,27,28 29-32 45

Value Seattle Chicago LA New York Cleveland Atlanta Miami

sessionIDs
with value 76,77 79, 81 85-90 82, 90-92 83-84 86 99,101-103

slice1

slice2

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(3) # unique values per key, per slice < valueMax (con’t)

So how do you check? Index inspect/language queries (API)

(1)Check config for value X

(can also check index-concentrator.xml and
index-concentrator-custom.xml files)

(2) Check current slice (or all) to get # unique values for a key

alias.host
406/2,500,000 = OK.

Note: There are some user-
generated scripts to

automate this. Check with
your local SE.

© Copyright 2016 EMC Corporation.

Indexing – Optimizations
(4) Index Age

Prior to 10.5, nothing cleaned up old index slices.
Result: Index Age > Meta Age (no point having an index for data that doesn’t exist)
Issue: With time-based slicing, this means more slices = more overhead = slower queries.

Note: 10.5 and later – index
timerolls with the metadb so

this is not an issue

Note: Other problem is when
index age < meta age = Un-
queryable data. Too much

indexing?

© Copyright 2016 EMC Corporation.

Group Aggregation

© Copyright 2016 EMC Corporation.

Group Aggregation
https://sadocs.emc.com/0_en-us/088_SA106/100_Dep/20GrpAggreg

- Effectively multiplies compute for queries
- Concentrators SPLIT the sessions between

themselves (NOT HA)
- Fewer sessions per concentrator given the same

amount of ingest

N:M relationship.

Most common group is 2 Concentrators -> 1 Decoder.

© Copyright 2016 EMC Corporation.

Monitoring
Performance
A Real World Study

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.

3 x Log Decoder/Concentrator Stacks
3 x Packet Decoder/Concentrator Stacks
1 x Global Broker
2 x Type Broker (1 x Log, 1 x Packet)

Packet Requirements: 30 days of metadata, 7 days of raw
Log Requirements: 60 days of metadata, 60 days of raw

Symptoms:
1) Analysts: “We can’t use the

system – it’s too slow”
2) Reports timing out (blank

reports in the morning)
3) Inconsistent reporting

against meta keys (gaps in
data where certain values
should exist)

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.

Symptoms:
1) Analysts: “We can’t use the system – it’s

too slow”

2) Reports timing out (blank reports in the
morning)

3) Inconsistent reporting against meta keys
(gaps in data where certain values should
exist)

Checklist
Query time statistics (query distribution) + analysis

Configure app rules for common queries

Check Reporting Engine Config

Check index slices

Check index age (vs meta age)

Check index depth/configuration

© Copyright 2016 EMC Corporation.

Query (in)Sanity - topQuery

- Most useful build in 10.6 (part of NwConsole – rpm can be
installed standalone on any CentOS host and pointed at live
NW stack)

- Run against query logs or direct live API call
- Many options to narrow the range, query type, etc.

Returns the poorest performing queries based on
overall execution time for both Investigation
(SDK-Values) and RE (SDK-Query)

Query time distribution of result set

(CLI) > NwConsole -c login concentratorIP:50005:[ssl]
admin netwitness -c topQuery days=7 top=20

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
topQuery Results

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
topQuery Results

Observations (from real environment, not above):

1) Terribly inefficient queries (multiple contains, regex, begins, logical statements)
2) Slowest top level queries for log data (most of the reports were log-based) showed 1 of 2 things:

- The same log concentrator always responsible (DC1LC1)
or
- A packet concentrator was responsible

Concentrator 1 Concentrator 2

781001 audit 2016-Oct-10 21:48:27 SDK-Values User admin (session 1390049, 192.168.1.212:60144) has finished values
(channel 1390059, queued 00:00:00, execute 00:00:05, 192.168.1.213:50005=00:00:00 192.168.1.215:56005=00:00:05):
id1=9877205 id2=254187287 size=15 fieldName=ioc.malware where="(time='2016-Oct-10 21:20:00'-'2016-Oct-10 21:29:59') && (ioc.malware
exists)" flags=sessions,sort-total,order-descending threshold=0/sdk values id1=9877205 id2=254187287 size=15 fieldName=ioc.malware
where="(time='2016-Oct-10 21:20:00'-'2016-Oct-10 21:29:59') && (ioc.malware exists)" flags=sessions,sort-total,order-descending
threshold=0

Broker query time – only as fast as it’s slowest
concentrator

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
Index Slices & Index/Meta Age

(API) https://concentrator:50105/index/stats/slices.total
(disk)> find /var/netwitness/concentrator/index -mindepth 1 -type d | wc -l

0

500

1000

1500

2000

2500

DC1LC DC2LC1 DC3LC1 DC1PC1 DC2PC1 DC3PC1

slices.total vs slices on disk (file count)

slices (on disk)

slices.total

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00

DC1LC DC2LC1 DC3LC1 DC1PC1 DC2PC1 DC3PC1

meta age vs index age

index age days

meta age days

(API) https://concentrator:50105/index/stats/time.begin
(API) https://concentrator:50105/database/stats/meta.oldest.file.time

Observations:

1) Too many slices on disk: DC1LC1, DC2LC1
2) Disparity between API reported value and slices on disk: DCLC1,

DC2LC1, DC3LC1
3) Index age > Meta age on DC1LC1 (and both are much larger than

business requirement)
4) Index age < Meta age on DC2LC1 = ~100 days of meta that isn’t

queryable
5) Packet stacks all look good.

Corrective Actions:

1) CRON job to timeRoll MetaDB (10.5 should also roll index) –
consistent across all devices

2) Clean-up/Delete Old Index slices (delete from disk)
3) Remove scheduled task for time-based slicing, use the session-

count config.
4) Engage Customer Support (re-index might be needed here)

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
Index Depth/Configuration

Observations:

1) Lines up with the “Data is missing” complaint. Low alias.host max values, ip.dst randomly restricted to 10,000 on DC2PC1
2) Note (not shown) – DC3LC1 had a HUGE index defined. Many unnecessary IndexValues and large ValuesMax = Too much data in the

index, space filled up before metaDB did.
** This was done due to misunderstanding of the reporting engine. Only meta in the “Where” clause must be indexed, not the
“Select” clause.

Corrective Actions:

1) Full index review (remove unnecessary indexes, remove completely unique indexes like ‘msg’, increase valuesMax for alias.host
2) Make sure indexes are consistent across like-decoders

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
Reporting Engine Configuration – Careful where you point that thing.

Observations:

1) Every single report, whether log or packet, was pointed at the Primary Broker
2) Log reports were timing out mainly due to packet concentrators taking a long time to respond to the query !!
3) Many, many inefficient queries, using lists when feeds would be better, etc.

Corrective Actions:

1) Go through each report, point log reports at log devices, packet reports at packet devices
2) Fixed overlapping report ranges (eg. weekly reports asking for 30 days of data)
3) Moved as much logic to app rules as possible, moved most (but not all) lists to feeds

© Copyright 2016 EMC Corporation.

Case Study – Noname Inc.
After things got happy again.

Meta timeroll

Index slice ->
session cnt

Queries -> app rules

Reports ->
split log/packet

#RSACharge © Copyright 2016 EMC Corporation.

Please Complete Session Evaluation

#RSACharge
© Copyright 2016 EMC Corporation.

